

The Commercial Technology and Regional Development Program at the Jet Propulsion Laboratory

Merle McKenzie

Jet Propulsion Laboratory California Institute of Technology August 29-30, 2002

Agenda

- Characterization of the Jet Propulsion Laboratory
- Description of the Commercial Technology and Regional Development Program at JPL
- Commercialization Mechanisms
- Performance Metrics
- Examples of Successful Technology Partnering with Industry
- Examples of Company Partners

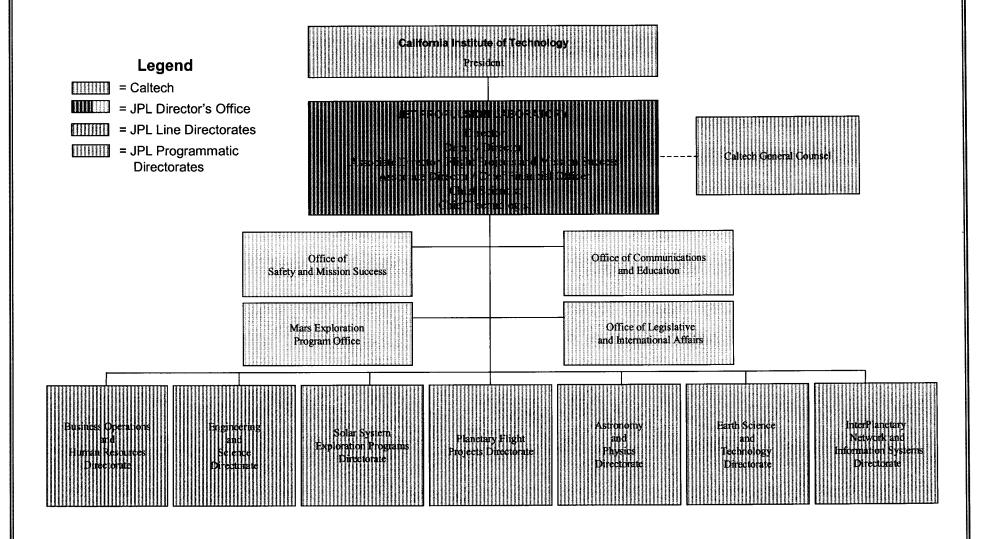
The Jet Propulsion Laboratory

A Federally Funded Research and Development Center (FFRDC)

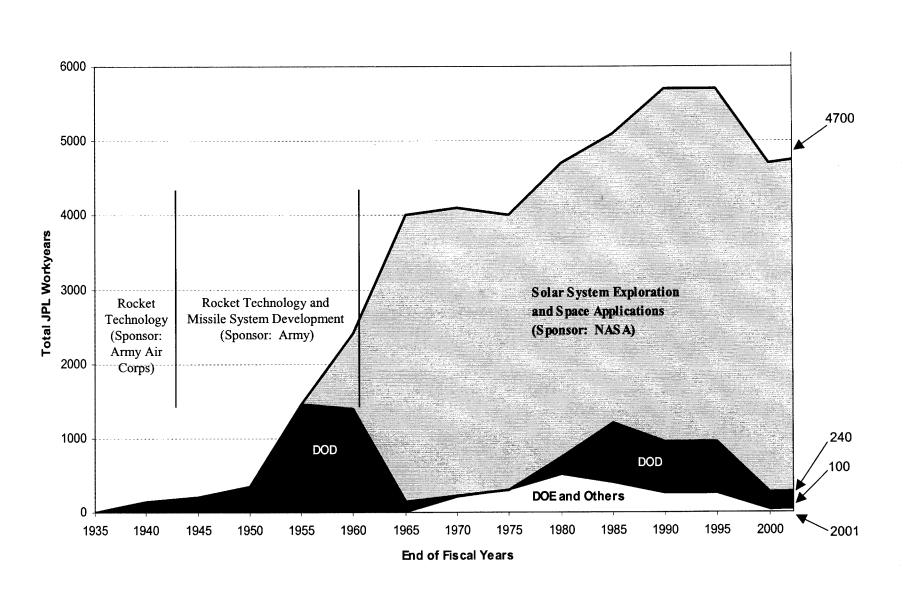
- FFRDC's were created from the 1940's to:
 - Establish non-advocate entities with a special relationship with their sponsors
 - Meet special long-term research or development needs
 - Be managed by a university, consortium of universities, or other non-profit organization
 - Develop long-term relationships between the government and the FFRDC
 - Examples are:
 - Argonne National Laboratory
 - Jet Propulsion Laboratory
 - Lawrence Livermore National Laboratory
 - Lincoln Laboratory
 - Los Alamos National Laboratory
 - Oak Ridge National Laboratory

Jet Propulsion Laboratory

Mission


- Enable the Nation, as part of the NASA team, to explore space for the benefit of humankind by developing robotic space missions to:
 - Explore our own and neighboring planetary systems
 - Search for life beyond the confines of Earth
 - Further the understanding of the universe and the fundamental laws that govern its evolution
 - Understand the dynamics of our own planet
- Apply our special capabilities to technical and scientific problems of national significance

Jet Propulsion Laboratory Organization



JPL Workforce Staffing History

California Institute of Technology

(Quota Workyears)

Technical Division Competencies

Systems

- · Mission design
- Navigation
- · Systems analysis and engineering
- · Spacecraft systems design
- · Mission operations systems design
- · End-to-end information systems design
- · Operations research
- · Economics

Telecommunications Science and Engineering

- Telecommunications systems engineering
- · Information and communication theory
- · Microwave remote sensing
- RF and optical transmitters and receivers
- Antennas
- · Electromagnetic wave theory
- Radio astronomy and GPS geodynamics, and metric tracking research
- · Planetary radar
- · Digital signal processing
- · Satellite and wireless communications

Mechanical Systems Engineering and Research

- · Mechanical systems
- · Structures and mechanisms
- Dynamics analysis
- Materials
- · Mobility systems
- · Environmental tests
- Thermal and fluid systems
- · Computer-Aided Design (CAD)
- · Propulsion and pyrotechnics
- Biotechnology
- · Chemistry and chemical systems
- Gossamer systems
- · Microgravity sciences
- · Mechanical fabrication

Observational Systems

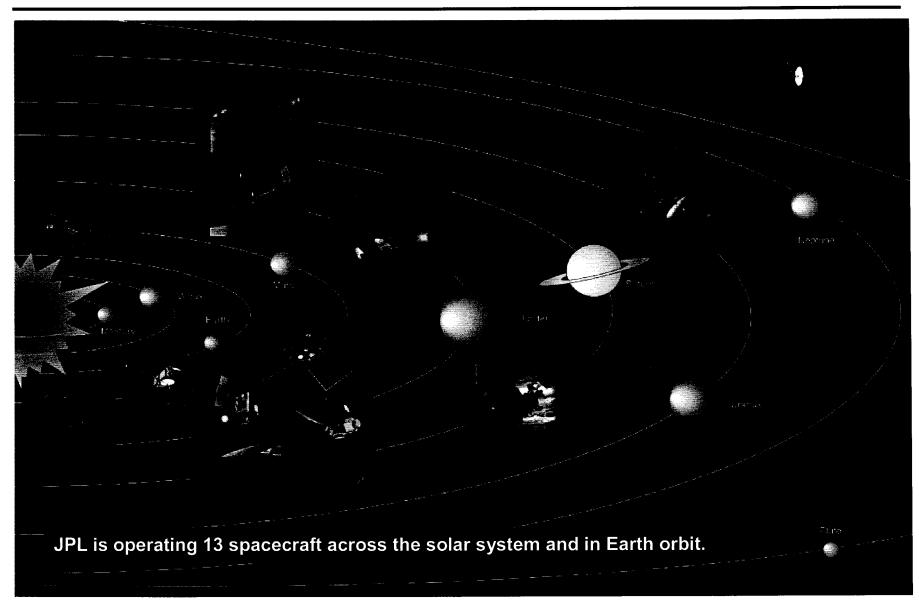
- UV/VIS/IR imaging/spectrometry systems
- · Microwave/submillimeter systems
- Optical/submm wave interferometry systems and technology
- · In-situ instruments and technology
- Advanced visible IR/submillimeter detector/sensor technologies
- Laser remote sensing
- · Advanced optics technology
- Mission/instrument/optical modeling and simulation
- Science/system data analysis and visualization technology
- · Planetary data systems
- · Database management technology

Earth and Space Sciences

- Remote sensing and in-situ flight experiments
- Laboratory chemistry and physics
- · Planetary astronomy
- Astrobiology
- · Astrophysics/Origins
- · Earth and planetary atmospheres
- · Earth and planetary geoscience
- Oceanography
- · Asteroids, comets and satellites
- · Space physics

Avionic Systems and Technology

- · Guidance and control
- · Integrated space microavionic systems
- Engineering sensors, actuators for control and precision metrology
- · Power systems
- Rovers, robotics, machine vision
- Science sensors, microelectromechanical, and microinstruments
- Neural networks, fuzzy logic, and algorithms
- Photonics, electro-optics, and optical processing
- · Systems autonomy
- · Mission operations support


Information Technologies and Software Systems

- · Spaceflight and instrument operations
- · Mission software systems
- · Mission data management
- Software engineering standards and technology
- Institutional infrastructure services and contract management
- · Information systems engineering
- Data management and information extraction
- Digital communications systems and computer networks
- · Computer graphics and system visualization
- Artificial intelligence and operations automation
- · Autonomy architecture and software
- · Simulation systems
- · Command and control systems
- · Secure communication
- · Intelligent synthesis environment
- · Quantum computing
- · Supercomputing

Operating Missions

Future Significant Events

SIRTF Fall 2002

Mars Exploration Rover 2003

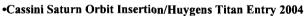
2002

2003

- •GRACE launch 2002
- •SeaWinds launch 2002
- •GALEX launch 2002
 - •SIRTF launch 2003
 - •Rosetta Instruments launch 2003
 - •Microwave Limb Sounder launch 2003
 - •Thermal Emission Spectrometer launch 2003
 - •Mars Exploration Rover launches 2003
 - •Deep Impact Launch 2004
 - •Mars Exploration Rover landings 2004
 - •Stardust encounter 2004

2005

•CloudSat launch 2004



CloudSat 2004

2004

Mars Reconnaissance Orbiter 2005

•Genesis sample return 2004

2006

- •Deep Impact Encounter 2005
- •Mars Reconnaissance Orbiter launch 2005

2007

- •StarLight launch 2006
- •Stardust sample return 2006
- •Mars Reconnaissance Orbiter MOI 2006
 - •Herschel launch 2007
 - •Planck launch 2007

•Mars Smart Lander launch 2009

9

Mars Smart Lander 2009

Description of the Commercial Technology and Regional Development Program at JPL

NASA Commercial Technology Goals

- > Enhance NASA Enterprise activities
- > Support NASA's national priorities and missions
- > Contribute to the nation's technology innovation and readiness

JPL Goals

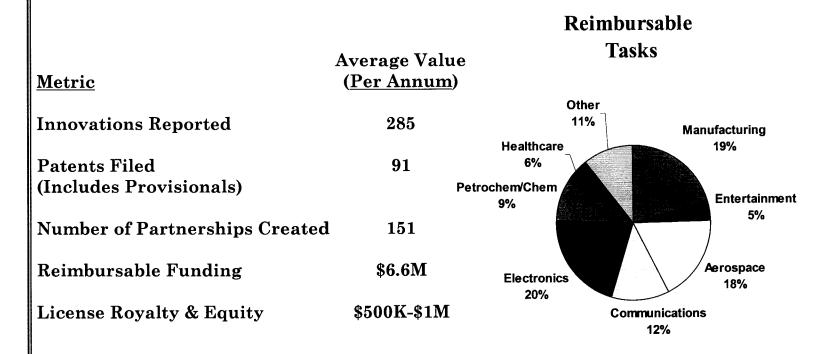
- ➤ Implement the NASA Commercial Technology Program goals at JPL
- > Establish a growing role for the private sector in JPL's future
- > Enable JPL to promote regional economic growth

Best Producing Mechanisms

- Aggressive new technology identification and evaluation
- Aggressive licensing (through Caltech Technology Transfer Office)
- Strong outreach to industry regarding opportunities:
 JPL Commercialization Center
- Strong in-reach to technical staff to promote innovation
- Regional liaison and collaboration
- Reimbursable technology transfer (funded by companies)
- Collaborative technology development
- Partnership with companies in their proposals
- Strategic Alliances

Commercial Opportunities for the Private Sector

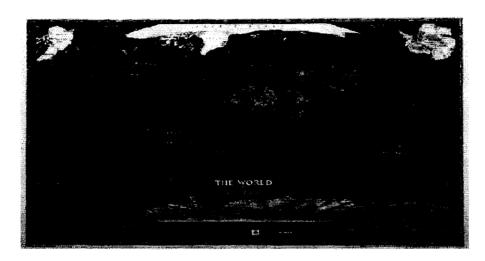
- U.S. companies fund and use JPL technology
 - > Licenses for patented technology
 - Expert assistance for un-patented know-how
 - Strategic Alliances for jointly developed technical thrusts
- U.S. companies acquire rights to use other JPL Intellectual Property
 - > Copyrighted software, data, and images
 - > JPL trademark and some mission trademarks
- U.S. companies can participate in JPL missions through funding
 - > Technology demonstrations
 - Commercial demonstrations
 - > Instruments/Subsystems
 - > Outreach
 - > Associated products


Overall Strengths of the JPL Commercial Program Office

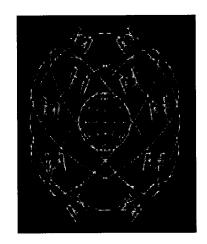
- Experience with variety of companies and products
- A flexible set of "partnering" mechanisms
 - Letter of Intent
 - Memoranda of Agreement
 - Technology Affiliates Contract
 - Technology Cooperation Agreement
 - Strategic Alliances
 - Licensing of patents, copyrights, trademarks, and know-how
- Deep knowledge of technology and missions
 - Perform commercialization planning for missions
 - Perform technology evaluations
- Single point of contact for U.S. companies to JPL

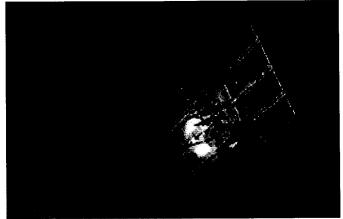
Performance Metrics

FY '99-00 Breakdown by Market of Reimbursable Tasks

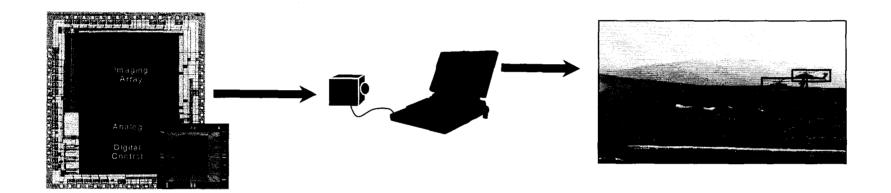


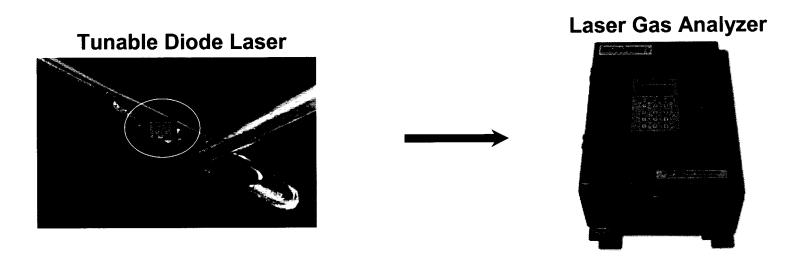
QWIP Based BioScanner for non-invasive breast cancer detection.


The National Geographic Society provided a gift to America's children by sending every school in the United States a large, laminated, updated map of the world. Space program technology from JPL played a pivotal role in the creation of the satellite map images.



JPL and the Huntington Library, Art Collections, Botanical Gardens, San Marino, Calif., have joined forces to study micro-climates, placing sensor webs in the various specialized gardens at the Huntington. Such webs allow large areas to be monitored.


JPL is a leader in scientific application of Global Positioning Satellite data. Dubbs & Severino benefited from JPL's expertise in rapid accessing of GPS, and data fusion, to create a terrain avoidance system for small aircraft.


The new microgyroscope was created out of a technology cooperation agreement between JPL & Hughes.

The Reconfigurable Multi-Resolution Imager System offers reduced bandwidth for surveillance and targeting applications. This success is based on JPL's CMOS Active Pixel Sensor.

A new commercial gas sensing product offers a compact highly reliable and highly sensitive gas sensor with no moving parts or consumables in addition to having low maintenance and calibration schedules.

Examples of Company Partners

California Institute of Technology

Abbott Laboratories

Advanced Silicon Materials

AAE Systems

AEC-Able

AFES (Alternate Fluorocarbons)

Alfred E. Mann Foundation

Allen Osbourne Associates

Alliant Techsystems, Inc.

American Digital Imaging, Inc.

American Mobile Satellite Corporation

Amerigon, Inc.

Ametek

Analysis Consultants

Apple Computer

Applied Solar Energy (Tecstar, Inc.)

Astro Terra Corp.

B.F. Goodrich

Ball Aerospace

Ball Corporation

Barnes Engineering Co.

Boeing Computer Services

Boeing North American Rocketdyne Division

Bournes, Inc.

Breault Research Organization, Inc.

C. Visions

California Construction Consortium

Caremark International

Comsat Mobile Communications

Creare, Inc.

Datatape, Inc.

Displaymor Manufacturing

Dow Key Microwave, Inc.

DTI Energy, Inc. (Formerly DCT/Detroit Center Tool)

Dubbs & Severino

E Systems ECI Division

E-Lite Limited

Eaton Corporation

EG&G Reticon

Engelhard Sensor Technology

Equity Plus Investments Inc.

Far West Regional Transfer Center

FMC Corporation

Ford Motor Car Company

Gencorp Aerojet (Aerojet)

General Research, Inc.

Global Visions

Hamilton Standard

HPM Stadco

Hughes Aircraft Corporation

Hughes Missiles Systems

Hughes Radar & Communications

In-Situ, Inc.

Integ, Inc.

Intergraph, Inc.

International Telephone & Telegraph Corp.

Kraft General Foods

KVH, Inc.

Examples of Company Partners (cont'd)

California Institute of Technology

Leo One Corp.

Leybold-Inficon, Inc.

Litton Systems, Inc. (Aero Products Division)

Lockheed/Martin

Lockheed Missile & Space Co.

Loral Federal Systems Company

MKS

Manville Sales Corp.

Marlow Industries, Inc.

Martin Marietta Corporation (Astro Space)

McDonnell Douglas

Methyl Bromide Global Coalition

Mission Research Corporation

Mission Technology Corporation

National Center for Manufacturing Sciences

National Geographic TV

National Semiconductor

NAVSYS Corp.

Northrop Corporation

Omaha Steaks Corp.

Opti Comp Corp.

Opto Knowledge Systems, inc.

Orbital Sciences Corp.

Pacific Scientific

Pargain Technologies, Inc.

Perkin-Elmer Corp.

Perot Systems Corp.

Photobit

Physical Sciences, Inc.

Polatomic, Inc.

Printrak International

Programmed Composites, Inc.

Pulson Communications

Qualcomm Incorporated

Qualcomm Systems (SSL/Space Systems Loral)

Research Institute for the Management of Technology

Rockwell International (Avionics)

Rohm and Haas Company

Schlumberger Industries

Shiley Heart Valve Research Center

Southern California Gas Company

Space Computers Corp.

Space Electronics, Inc.

Space Systems/Loral

Stanford Telecommunications, inc.

Sundstrand Corp.

Sun Maid Growers of California

SunPower Inc.

Sy Technology, Inc.

Technology International, Inc.

Teledesic Corporation (Calling Corp.)

Thiokol Elkton Division

Three M Company (3M)

TRW, Inc.

Ultra Corporation

Vitesse Semiconductor Corp.

Walt Disney Imagingeering (WDI)